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APPLICATION OF THE METHODS OF GAS DYNAMICS TO
WATER FLOWS WITH FREE SURFACE*

PART II. FLOWS WITH MOMENTUM DISCONTINUITIES
(HYDRAULIC JUMPS)

By Ernst Preiswerk

SHOCK POLAR DIAGRAM

16+ Introduction

It ig known that in "shooting"** water under certain
conditions the velocity may strongly decrease for short
distances and the water devth suddenly increase. An un-
steady motion of this type is known as a hydraunlic jump
(fig. 35). 1In this photogranh the water flows from for-
ward to rear. In the forward part the water "shoots."
Over the entire width of the channel it jumps toc a new
water level and flows with considerably less veloclty in
the same direction toward the rear. The entire vrocess
is practically stationary.

Hydraulic jumps occur only in shooting water; i.e.,
in water whose velocity of flow is greater than the wave
vropagation velocity. In order to show this, let us im-
agine the forward water to be at rest and that from be-
hind there arrives the front of a water wave which arose
from the opening of a large sluice. If the wave were very
small it would move forward with the basic wave velocity

J8h,. Since, however, it has finite height h, - h,, it
moves to a first approximation with the velocity

*"Anwendung gasdynamigcher Methoden auf Wasserstrgmungen
mit freier Oberflache." Mitteilungen aus dem Insti-
tut fhr Aerodynamik, no. 7, 1938, Eidgenossische
Technische Hochschule, Zlrich.

(For Part I, see Technical Memorandum No. 934.)
** The term “"shooting" has been used to denote the state

of flow for which ¢/ /gh > 1. (See T.M. No., 934.)
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Uy = vfé (hy + hp)/2 v/(hé/hl)*

that is, more rapidly than ./ sgh,, and also than N/ghg.

In this coordinate system, moving with the shooting water,
the wave i1s not stationary. The water may now be consid-
ered as moving with the velocity wu; with respect to the
wave, The latter then remains at rest in space. The wa-
ter ahead, however, is not at rest but has the flow veloc-
ity wuy, and this is greater than ,/gh;. It has thus
been shown that such hydraulic jumps can be stationary on-
ly in shooting water. If the wave existed in streaming
water it would, on account of its propagation velocity;
which in this case is larger than the flow velocity, travel
upstream. There would be the usual outflow from upper to
lower level without shock.** A shock (or hydraulic Jjump)
in which the wave front is normal to the flow direction,
is called a right hydraulic jump. It naturally has the
property that the propagation velocity of the shock wave
relative to the water is egual and opposite to the water
velocity ahead of the jump.

More general than the right hydraulic jump, is the
less familiar slant hydraulic jump (fig. 26)., The water
flows from left to right out of an open sluice. The wa-
ter depth decreases and the velocity increases. The
water flows from a constant upper water level into a basin
with constant lower water level. Since the difference in
head is greater than a third of the uvper water depth,
the water after escaping from the sluice receives, accord-
ing to equation (42) a larger velocity than the basic wave
propagation velocity, so that it shoots. It is thus vpos—
sible that it accelerates so rapidly that the water sur-
face of the flow becomes lower than the lower water level.
There is a portion of the flow for which there is consid-
erable pressure rise over n short distance. In this flow,
however, the jump does not take place on a normal to the
velocity out along a line obligue to the flow direction
and we have a slant jump. On the meeting of the rear and
forward jumps shown on the figure, there is a particularly
strong pressure rise,

*o o , . . . . .
This formula is obtained from a simple avnlication of
the continuity and momentum equations; for h,—>h,, 1t

naturally vasses over into wuj; = a; = ,/g hy;. {See Lanmdp,
reference 1, pp. Z07=3%08.) '

**Phe term "shoeck" will be used interchangeadly with "hy-
draulic jump" and naturally has nothing to do with the
conmpressibility of the water,
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The slant jump, like the right, occurs only in shoot-

. ing water. In order to be able to give a simple numeri-

cal treatment of the slant hvdraullc Jump, we make the
assumption that the motion is entirely unsteady; i.e.,
that the water jumps suddenly along a line - the jump

line - from the lower water level to the level after the
jump. The simplest case of such a jump is obtained if a
parallel flow is deflected bv an. angle B (fig. 37). The
shock in the supersonic flow of a compressidle gas has
been treated in detail by Meyer and Busemann (reference 2).
Here, however, it will appear that for the shock of the
shooting water, the analogy with a compressible gasg flow
for k = 2, no longer strictly holds. The previous con-
siderations involved as assumption the validity of the
Bernoulli equation, which is equivalent to the assumption
that the flow was without logses. With shock, however,
kinetic energy is converted into heat. In a 2ag flow this
again enters thermodynamically into the computation, where-
as with the water flow it is to be treated as lost energy.,

17. Shock Polars

For the case of the deflection of a varallel flow by
the angle g, the jump line is a straight line through
the corner, making an angle Y (fig. 37). TFor a very
small deflection B -—=>0, the two following limiting cases
are possible:

l. A right jump; % 1is then a right angle.

2. The flow goes through undisturbved. This ig the
limiting case of a jump whose effect approaches zero. The
Jump line pasgses over into the Mach line through the cor-—
ner, Y in this case being the Mach angle.

We shall take the x~axis such that it has the direc-
tion of the velocity of approach ¢, . The components in
the x and y directions are thus wu; = ¢, and v, = 0.

Let the water depth before the jump be hl, the velocity
after the jump c¢5, 1its components in the x and y direc-

tions, wu; and vy. The water depth after the jump we

shall denote by hy; cp and dt, the components of the
velocity normal and tangential. regpectively, to the Jump
line. Here, too, we shall distinsguish magnitudes before

and after the jump by the subscripts 1 and 2, respectively.
As control region for setting up the continuity and momen-

'
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tum equation, we choose the region ABCDA (fig. 37).

With the above notation, the continuity ecuation
reads?

hy en, = ha cng (71

The momentum equation for the direction normal to the jumd
for the width AD = Db, states that the decrease in out-—
going momentum by that of the ilncoming momentum is egqual
to the force (area times pressure): ’

(p cpyhad) Cn8~(p'cnlh1b) Cnl=bh1 gphy /2-bhy gphg/2

or, rearranged:

h, ogl + g hy?/2 = hy cZ_+ g np%/2 | (72)

[
2

Writing finally”the momentum equation for the direction
tanzential to the jump

(p Cnlhlb) ct, = (p Cnahzb) Ct,

there is obtained, taking account of the continuity equr-
tion (71):

o
=1

= C 7%
th £ ) _ ( )
During the Jjump only the component of the velocity
normal to the line is changed, the tangential component re-
maining unchanged,

Ag in the zas flow, it is convenient also for the
treatment of the hydraulic jump, to pass from the field of
flow %o the velocity plane. Taking account of equation
(73), there is obtained the diagram shown in figure 38,
The region of the flow before the jump is in the velocity
diagram represented by T. After the jump, P is the
point of the hodograph corresvonding to the flow. Thoe Jump
itself is represented by the trangition from T to P,
The direction of the jump line in the flow ig¢ given in the
hodograph by the normal to the segment TP, since this
has the direction of cy.

¥or a fixed welocity of approach, ¢y, that is, for a
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fixed point of the hodograph T, there are obtained for
- various deflection angles B, various end states, P,

 The totallty of all end states which correspond to a fixed

initial state, form a curve, the "shock polar" (fig. 38).
If the initial state T is changed, then to each point )
T, there corresponds a shock polar. The entire Tamily is
the shock polar diagram (fig. 39). In the supplement, the
latter is drawn for air on chart 3, and for water on chart
4,

The equation of the shock polars v, = f(up,) will

now be determined. We start from the following five equa-
tions:

1. Continuity equation (71)
2., Momentum equation (72)
e Enersgy equation*)
* b2 .
2 hy = % al? - u,° (74)

We algo need the two geometrical relations:

c ( y
‘1 u Uy = Up
4. o= : = 2 (75)
®np (u; = un) vy - vy ©
. E 3
5. cnl(cnl - cna) =y (u; - uy) . (76)

In the five equations referred to above, there occur the
variables ¢n,s Cng,, b1, hp, uy, us, and vy. Eliminating
the first four, there is obtazined the equation of the shock
polar. (See equation (77).)

In order to carry out this elimination, we first sub-
stitute in equation'(75) the continuity equation (71):

# 4 ;
From the energy equation (9), we have:

2g hy = 28 hg - ¢;° = 28 hy - 1,2 (since v, = 0)
Substituting the critical velocity a*l before the jump
(equation (42)), we have:

28 h_ = 3 a
(For footnotes ** and ***, g

R (74)




"

6 N A.C.A. Technical Memorandum Ng. 935

hy uy (wy - ug) (1)
by (wy = ug) ug = v5°

Substituting the continuity equation (71) into. the momentum
equation (72), there is obtained:

hy ey, + 8 hy"/2 = by ey Cp, t+ 8 hp®/2
We thus have:

2g by = 2¢ hy? + 4 hy o (en, - opy)

whence

N a 2ghy + 4deq. (cp.-cp, )
= = - o = 1 +1 el
<h1> = 1 + 4hy eq, (en, ~cn, )/28hy St

Substituting in the above the relations (74) and (76), we
obtain:

(Footnotes from p. 5)

* K . o~ .
From figure 38, we may read off directly the two equa-
tions:

w2 4 TP - o = of
and

2 - o8 = &2

U, 1 jox ]

and their difference ig:
lal in] o [ Ca
Uyt o= up® - VT = Cpy < Cng (a)

Similarly from figure 38, it may be seen thatl

2

(b)

b=

2
(uy = wa) + v® = (en, = cn,)

Dividing equation (a) by (b) and solving for the quotient

¢n,/C¢n, ,» we obtain the above relation (75). This relation
must naturally exist since the three magnitudes u,, ug,
and vy, completely debermine the figure 38,

¥ k% :

From figure 38, we read off directly,

(o]

il

n, (cnl~cna) (u; cos €) (cn1~cn2) =

u; (u; ~ug) (78)

[}

w; [eos ¢ (o ~cp )]
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‘ 2 2 2 2
- w2 + 4 u,2 - 4 uy ua)/(Zaz - u,2)
’Only the vositive root applies, since the water depths R,
and hp, and hence also their ratio, are naturally posi-
tive. We obtain: : '

h, / zax® - 4 u u; + B oy 8 :
2 o 4 ~// 21 172 2! (11)
B, 2

Setting finally the two right sides of equations (I) and
(I1) -equal to each other (elimination of h,/h,) and solv-

ing the relation +thus obtained for v 2, the required
equation of the polars is finally obtained as

vp® = [ug-uz] [“a”ul J/(Zatg~u18)/(3ara“4 U uat3 ula)]

(77)
Substituting in the above v, = vy/a* , W, = uy/a* and
u; = ul/a*l as nondimensional velocitics referred to a¥*,
the equation of the polars becomes:
- - = o [= = — S
v,2 = [u,-u;] fua—ulA/QZ~ul )/ (3=4 Ty Ua+3 Uy 7)) | (77a)

These are the curves f(u,, v,, ﬁl) = 0 with T,
as paraneter drawn in figure 39 »nd on chart 4. They are
similar to the shock polars of an ideal gas (chart 3), dut
show a characteristic difference. Whereas for the maximum
velocity the shock wnolars in both cases become circles,
the latter pass through the origin for water while for a
gas, the origin is not attained.

In the case of a right jump, v, =
the velocity after the jump by upg (fi
(77a) for the latter becomes:

0. If we denote
£z, 38), equation

0 = (al-ﬁag)<(ﬁ2g~al J (3-5,7)/ (345, Tge + zﬁf)} (2)

whence we obtain:

*From (a) there is obtained:

Upe = Uy M/(z—ﬁla)/(z~4ﬁlﬁzg + 3W;2)., If this equation
is squared, multiplied through by the denominator, arnd ar-
r-_c—_mged_l the resulting expression may again be divided by
(wy = uag) and there igs obtained a quadratic equation for

W, Upe with the positive solution (77b).




8 N.A.C.A. Technicagl Memorandum No. 935

""—- 3~-ﬁa 16".&2‘1 T
Uy Tpg = ———g— [1 4 M/rl + ““”“&_Ej (77%)

The values computed from equation (77b) are collected in
table IV. For an ideal gas the relation analogous to {(770)
may Dbe written in very elegant manner:

Uy Ugg = 1 (Prandtl) (77¢)

Only for the case u; = 1 does (77b) accurately asgree
with (77c¢).* Otherwise the right hydraulic jump leads to
no simple relation like the normal shock of a gas. Within
wide limits, however, equation (77c) may also be applied
to water. (See values of T, Uae 1in tadle Iv.)

We wish further to show that a very small jump has a
Jump line which in the limiting case ig a Mach line. From
the triangle TPU of figure 38,
tan Y = (uy - uy)/v,

From the equation of the shock polars (77a), we have:

s — A < ﬁ - Tll-)
[Ba =T | | L Y (774)
L VG — — a — :_‘ —_— —— a

A small jump is obtained if U,——>T,;. The root in (77d)

then approaches 1 and the entire expression becomes inde-
terminate, By differentistion of numerator and denomina-
tor with respect to the critical variadble Uy, there is
obtained: ' ;

rﬁ; = Ea} = ~§_2_§;3_~
L Va Jaqul 3(u, - 1)
We then have:
(sin® Y)_ _ = (tan® Y)/(1 + tan® Y) = (3-u, )/2 ﬁlg (a)
Up =U_1
*For u; = 1, the shock polar shrinks, however, into a
point (fig. 39),. The only possible state after the jump
is thus Wpze = 1. For this case we no longer have a finite

jump dut thgn the gas flow also agrees with the water flow.
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On the other hand, for the Mach angle o

sin® o. = (al/ul)& . (1)

For the wave velocity a,, we have:

a,lé = g lhl (2)
The energy equation (9) is

u® = 2¢ (hy-h,) (3)
As reference velocity, we choose a:. For this equation
(42) avplies

a2
aX = 5 & hO (4-')

Eliminating from equations (1) to (4) the magnitudes a,,
hy, and hy, there is obtainecd for the sine of the Mach
angle o the relation

sin® ¢ = (Z-%," )/e2%,° (p)
Comparison of (a) and (b) then shows that

. \ .
(sin Y. . _ = gin «
Jug =u,

18, Water Depths in Hydraulic Jump

Up to now we have investigated how the velocity
changes in the case of a hydraulic jump. In this section
we shall treat the water depths more in detail.

For a flow without jump, the energy equation (9) holds
between ¢ and h

c® = 2¢ (hy = h)

where the total head hy, 1is a constant. In the case of a
jump a portion of the kinetic energy of the water is con-
verted into heat. TFor this reason the total head after

the impact - which, to distinguish from hy,, we shall de-
note oy hy' - is smaller than it was before. For the flow
after the jump, the relation between the velocity and the

water depth is given by the energy equation in the follow-
ing form: .
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c? = 25 (hg' =~ B)

The new total head hgy' 1is constant along a stream 11 ne
but after the jump may vary from one streamline to another.

For gases (reference 2%, a clear picture of the pres—
sures in the flow is obtained if the pressure is plotted
as third coordinate over the velocity plane. For adiabat-
ic flow there is thus obtained in the wu,v,p svace & sur-
face of rotation whose meridian section revresents p as
an function of «c¢:

2 2k Py | , (k—l)/k]
P

1 - (p/py) (3a)

I
! I
“

For the two—dimensional flow of water with free sur-—
frce, the magnitude h" corresponds to the nressure D
in the gas flow. If we plot sbove the wu,v plane, not

the water depth dbut the valuers + = Zh /2, we shall find

for the water in the =u,v,t space the same relations that
hold for a gas in the uv,v,» svace.

The renresentation in the u,v,%hB/Z smace 1i1s not
very suitable for the practicel computatioan of the jump.
Nevertheless, we shall first learn the properties of this
revregsentation because it sives a very clear plcture of
the entire hydraulic jump process as regards the velocity
and the watcr depth simultaneously.

In the flow of water without dissipation, the water
deptn h and hence %hg/B, demonds not on u and v in-
dividually, but only on the absolute vealue of the veloc-

ity ¢ = u2 + v@, Plotting t adbove the wu,v planec,
there 1s obtained a surface of rotation. Let us consider
its meridian section % f(c) (fig., 40), abscissa c,
crdinate t. From the Bernoulli equation (9), we have:

[}

h = h, - c?/eg (78)
whence

t = gh®/2 = (1/88) c* = (ho/2) ¢? + (ghy%/2) (79)

The characteristic shave of these curves of the fourth de-
gree (fiz., 40) which in nur prodblem have a physical sense

*
Bugemann, in Gasdynamik, pon. 374 and 439.
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only from A +to 3B, may easily be understood from figure

"4l which shows the parabola-(78) and-its."square" (79). .

For each totai head ho' there is one such curve.

The family of all these curves we shall denote as the +t,c
diagram (fig. 42). As long as no jumps occur along a
streamline the relation between t and ¢, on account of
the constant total head, is given by a fixed curve of this
family. As soon as jumps occur along the streamline, the
t,c opoint on one curve "jumps" to another t,c curve,

Because the new total head for each jump becomes
smaller than the previous one, we come each time to a curve
lying closer to the origin and not the reverse.. To the
curves of constant total head hgy!' = constant, which zive
the relation between the gfa 2 and ¢ for the zero loss
flow, there corresvond the adiabatics in the gas flow,
these being the lines of constant entropy, s = constant.
For the ideal gas, these are affine with respect to the
¢ axis but not for watcr.

The right hydraulic jump may very simply be studied
in the t,c diagram. Let us compute first the slope of
the tangent of the +t,c curve to the axis of abscissas.
From eguation (79),

dt _-¢°

at e = - ¢ (hy - c@ 80
ac " 53 ~ © Do ¢ {hg - c3/2g) (80)

and with the energy equation (78) this slope becomes

We shall, furthermore, compute the intercept of the tan-
gent on the + axis, which is

QY = QP tan T = ¢ (c h) = ¢® h
On account of t = ghg/E:
0Y = QY + 0Q = h c® + gh®/2 ’ (82)

Physically both the slope of the tanzent dt/dc and the
intercept of the tangent on the t axis have a meaning.
Through a vertical area in the flow normal to the stream-—
lines and whose width is equal to the unit of lensth there
flows per unit time the wvolume ¢ h. The magnitude h c®
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in eéquation (82) represents, except for a constant factor
P, the momentum flowing through the same area per unit
time, and the term gha/Z gimilarly, except for the con-
stant factor p, represents the pressure force on this
surface. :

For the right hydraulic jump the continuity equation
(71) is .

hl Cl = ha 02 (7]-3«)
The momentum equation (72) becomes:

hy. c.? + ghi2/2 = hy cp? + ghp?/2 (72a)

These two equations, compared with (81) and (82) state the
following:

l. Prom (7la) and (81): he tangent at the t,c
curve at the point t,,c; Dbefore the jump, has the same

slope as the tangent at the point t5,c5 at the t,c
curve -after the jump.

_ 2. From (72a) and (82): The + intercept of the
tangent at t;,cy 1is equal to the t intercept of the
tangent at tosCq

Together they simply state that both tangents are one
and the same straight line PQ (fig. 42). If the magni-
tudes t and ¢ are given before the jump, the right hy-
drauvlic jump is represented in the +t,c diagram by a2 jump
from P(t,,c;) on the tangent to the t,c curve through

this point to Q(ts,cs;), where this tangent touches an-
other t,c curve.

Since as a result of a jump, we arrive at a t,c
curve which lies nearer the origin than the $,c curve be-
fore the jump, it may be seen from figure 42 that the hy-
draulic Jump is possible only for points P Dbefore the
Jump which lie on the curve to the right of its point of
inflection., This is precisely the case for shooting water
since, according to (80),

a?t/dac® = 3c%/2g ~ n,

At the point of inflection this must be equal to zero, so
that '
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This ig the limiting velocity for streaming and shooting

~water. - B A ce e . P

Let us consider the slant jump. This may no longer
be drawn in the +t,c plane; we require the wu,v,t  space.
Plotting the values gh®/2 . perpendicularly above the u,v
blane, there is obtained for the case of a flow without
losses the surface of rotation of a %,c curve. We shall
denote such a surface as a "t-hill" (fig. 43). PFor each
total hnead ho’, there is one such hill -~ each lying with-
in the other. As long as no jumps occur in a flow, all
possible corresponding values of u,v and ghz/E are, on
account of the constant head hy, given by a fixed t-hill.
As soon as 2 jumv occurs along a streamline, corresvonding
values of u,v and t jump to a new, smaller t-hill, which

corresnonds to the new total head ho’. After the Jjumpn,

however, the relation is ~again given by a fixed new t-hill.

Let P(ey,0,zh,%/2) denote the point in the u,v,t
space before the jump; Q(u,,v,,8hp%/2) after the jump
(fig. 44). TFor the Zeneral slant jump there is obtained
in the nu,v,t space a clear representation similar to that
for the right jump in the %,¢ diagram. This revresenta-
tion will include the right jump as a speclal case.

1. The slone nf the tangential plane at the point P
of the t~hill before the jump is,in the direction m,,

equal to zero, and in the direction Ty, equal to the

slope of the meridian; i.e., equal to the slope of the t,c
curve which, according to eguation (81), has the value
¢, h;. The slope of this tangent plane at the woint P

in the direction ?@ thus becomes: ™
tan 0, = ¢; h; cos €; = Cn, b1 (83)

The point Q lies on a +t!'-hill. The tangent dlane
has, in the direction mp; the slope zero, and in the di-
rection 1ry, according to (81), the slove hscs. The

slope of the tangent plane at the point Q of the %'-
hill in the direction PQ is thus:

tan 0, = c; hy cos €5 = cy_ hp (84)

P=

*The slope of a plane in any direction is equal to the
slope of the plane in the direction of drop multinlied by
the cosine of the anzle between that direction and the
corresmonding direction.
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Comparing (83) and (84) with the continuity eguation for
the slant jump (71), it is seen that the tangent plane

at the t-hill at the point P %before the jump in the 4i-
rection PQ has the same slope as the tangent plane at
the new hill at noint Q after the jump in the same di-
rection PQ.

2. Let us now compute the slope of the segment PQ
in space toc the <u,v plane. The height of the point @
is t, = ghp3/2; that of P is t,. The slope of PQ

then becomes:
tan o, = (b, - tl)/(cnl - Cng)

Since, however, P and Q are the points before and af-
ter the jump, the continuity equation (71) and the momen-
tum equation (72) are applicable. Substituting these two
equations in tan o, there is obtained from (72):

— 2 2y 2
tp - t; = ghp /2 ~ gh;%/2 = hy cp, - hp cof,

o

and with (71) this becomes:

Hence

tan o5 = (t, - tl)/(cnl - Cng) = hy op, (85)

Comparison with the result found under 1 shows that the
segment PQ has the same slope as the tanzent plane at P
and Q in the direction PQ.

The segment ?Q thus belongs to the two tangent
pPlanes and, as a common line of these two planes, has the
property that it is tangent both to the t-hill and the
t1'-hill, This result would also have been found by deter-—
mining the line of intersection of the two tangent planes
at P (given by m,; and ry) and at Q (ziven by
o and r,). There would then have been obtained the
straight line PQ as the line of intersection.

The general hydraulic jump is taus revpresented in the
u,v,t space as follows: Let P Dbe a point bvefore the
Jjump. Drawing through this point an arbitrary tangent at
the t-hill (the only resitriction on the choice of this
tangent is that it must vass within the t-hill), the point




indicating the state .after 'the impact will be found where
this tangent. touches another t-=hill of. the family. To the
degree of freedom of the tangent corresvonds the degree of
freedom .0of the deflection -angle  PB.  The -projection on the
u,v plane of all possible peaints of ¢ontact . Q of the
tangent of a fixed point . P is the already computed "shock
polart through P.

The right hydraulic-jump is obtained for a direction
PQ with the anglc ¢, = 0., TFigure 42 simply shows the
vertical section with €, = 0 through the t-~hill family.

. By the intensity of a jump we shall understand the
ratio of the total head before the jump to the head after
the jump, this ratio being a measure of the energy loss.

‘The intensity is thus greater the more nearly the angle VY

between the shock wave front and the initial direction ap-
proaches a right angle, since €, then becomes smaller
and the tangent PQ of the t-hill (total head hy) at P

‘touches t'-hills ‘at Q (total head ho‘) £hat lie more to-

ward the interior. The right hydraulic jump has the maxi-
mun intensity.

It mav be remarked further that the point Q of an
arbitrary slant or right jump as the point of contact of a
t'-hill is that point of the straight line PQ for whiech
the new total head ho’ is a minimum. ZEach jump thus is
such that the encrgy loss becomes a maximum. For the
ideal gas, the surfaces correspvonding to the t-hill are
surfaccs of constant entropy, and the shock is such that
the increase in entropy is a maximum (Busemann).

The line Jjoining all possiblec points of contact of
the tansent at a fixed noint P is the hydraulic-jump
curve in the wu,v,t space, It is a plane curve, its pro-—
Jection on the wu,v plane being the already computed shock
rolar.

There is an entire fanily of shock curves in space

(parameter point ©P). In their totality they form a cer-

tain surface. This we shall denote as the shock surface
in the wu,v,t svace. “For mractical computation of the
Jump, the projections of the following three families of
curves omw the wu,v plane are found convenient. '

1. The curves of intersection of the shock surface
with the tangent nlanes of all points P(u,O,t); them give
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the familiar shock polars (fig..39).

2e The curves of intersection of the shock surface
with the planes parallel to the wu,v plane; that is,
contour curves. These are the linegs of constant water
depth hy (fig. 45 and chart 5).

3 The curves of intersection of the shock surface
with the family of t-hills. These give -the lines of con-
stant total depth after the jump; that is, lines of con-
stant energy loss.(fig. 46 and chart 4).

Lines hy/hy = constant: From the five equations
(71), (72), (74), (75), and (78) with the variadles cyp. ,
Cn.» B1, hp, vy, ug, and vz, there is obtained an equa-—
tion of the form -F(ua,vg,hz) = 0 if the four magnitudes
c

c h,, and u; are eliminated. These are the curves

nl, na’

of constant water depth after the jump. In order to ob-
tain these curves the elimination was partly carried out
graphically. The method used will be briefly explained
in what follows.

From (71) and (72) there is obtained:
%haa/2 = ghlg/e + hy cn, (Cnl = an)
which, with relation (76)

= gh,%/2 + hy u; (u1 - ua)
or

(na/no)" = (ny/no)" + (4/8) (8/28ke) (hy/ho) wy(wy =us)

Substituting the critical velocity equation (42): afg =
2gho/3) szives:
2 2 - —-
(ha/ho) = (hl/ho) + (4-/3) ul<ul - u_z) (hl/ho) (86)

Solving for wupy:

— — 2 27,04 7
Ug = Ug = ((ha/ho) ~ (hy/ho) ]/!E Uy (hl/h0>J (862)
L J LT
We still need equation (74), which reads:
2 1 -2
2%hl/5af = 1 = 7 ™
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Substituting (42) in the above there is obtained:

H

=1 - %%,2 (87)

:hl/Fb 3

In order to draw the lines ‘ha/h,, two methods were em-—
ployed: o

a) Assume a fixed value hg/ho = k and various val-
ues TW; for the variabdble. To each TW,; there corresponds
by equation (87) a value h;/h,. With T,;, the corre-
sponding h;/h, and the fixed hy/h,, there is obtained
from (86a) the velocity component Ty after the jump.

The point on the shock nolar through TW; which has this

avscissa up, is a point of the curve hy/hy = k. By
varying %, there is obtained the complete curve hg/ho =k,

b) Detsrmine the values hp/h, along an arbitrary
straight line in the wu,v »plane. (The straight line
throuzh W =1, ¥ = 0 was taken.) Assunme UWy; measure U
at the wvoint of intersection of tiue straight line with the
shock poler for WUy; substituting Wy, the corresponding
value hl/ho obtained from eguation (87) and the above
determined value of <, in equation (88) gives the value
of hn/a, at the voint of interscction. By varying 7T,
there ig obtained hg/ho along the entire straight line.
From these values there are obtained by interpolation
vroints of the family of curves ha/ho = constant.

In particular, the values of ha/ho may be computed
for the right hydraulic jump. We have:
(hy/ho)” = (ny/ho) + § (hi/ho) T (W1 - Upg) (861)

Substituting in the above the values for ﬁgg computed

from equation (77v), there are obtained the water-depth
ratios hg/ho given in table IV for the right hydraulic
Jump.

The maximum water depth in the state after the jump
i1s obtained from equations (86b), (87), and (77b) for the
Jump which starts from the values u, = 3/,/5; that is,
for n;/hy = 2/5, w,, = 3/2./5, and is found to be 1h,/hg
4/57 and hy'/h, = 19/20. We thus have the highest

oint of the above described shock surface in the u,v,*t
vacea.

1

»
s
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19, Energy ‘Loss During Hydraulic Jump

The energy loss during the jump bears a sinple rela-
tion to the intensity of the jump -~ that is, to the two
total heads before and after the jump. In the flow over
a horizontal bottom the potential energy is a minimum if
the water depth h is zero., If we set the potential en-
ergy equal to zero, then for a mass of water m at a

“"depth h the potential energy is P = mg h/2,

Since the kinetic energy at points of rest is equal
to zero, the energy losgs AE which occurs in the hydrau-~
lic jump, may be computed as the difference of the poten-
tial energy at a point of rest beforé and after the jump.
For the mass of water m, this becomes:

AE = mg (ho/2 =~ ho'/2)

h
Dividing by the energy before the jump, E = ng 29, the

relative energ8y loss igs obtained as

Ae = AE/E = 1 - hy'/hg (88)

1l

This is the relative energy converted into heat. For
water, it is to be considered as'"ost." In a gas, how-
ever, where the heat content is the magnitude that corre-
sponds to the water depth, the total heat content remains
the same before and after the shock. For the gZas, the
heat arising during the shock is not "lost" energy. The
energy equation ig the same before and after the shock:

c® = 28 (ig' - i) = 2g (i, - i).

Now will be computed the curves of constant total

depth h,y'! after the jump., We start from the Bernoulli

equation which for the flow after the Jjump reads:
ce? = 2g(ho' - hy)
This equation divided by a*® = 2ghy/3, <2ives:

1
a2
(cp/ak)

and solved for hy'/hy:

1l

3 (ho'/ho — hg/ho) (89&)

2 ﬁ

Bo'/ho = ha/ho + § Ty (89%)

¥ = =
%he values c¢5, u
C

, are the velocities referred to a:
s = Cg

- N
%, Tpg = ugg/at .

a2

»

~ <l

for example,
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., From the above formula the curves ho'/ho = constant"(fi%.

"746) were drawn similar to-those Tor “hg/hg = constant. - The
* following methods were employed: . .

1le The values  ho'/hO for the iight hydraulic jump -—-
that is, along.the wu-axis, (v, = 0) = are obtained by
substituting the previonsly computed values hg/hd and
ugg ((77b), (86b), (87)) in eguation (89b). They are

also given in table IV,

2. Along the circle, h,/h, =

0 may bée read off
directly, and from eguation (89D), hy

2 1 —
/ho =7 088.

[
!

%5« Along general ardbitrary curves - in particular,
along circles about the origin (cz = constant), and along

the curves given in figure 45, ha/ho = constant - the val=-
ues ¢, and hy/hy may be read off, and from (89b) we
have h,'/h, along these curves.

4. Points of fixed curves hy'/hy = k may also be
directly computed, To each hy/h, there corresponds with
the sssumed fixed ratio hy'/hy = k, a value ¢, from

equation (8%a). The intersection of the circle with this
value of T, ag radius, and the origin as ceanter with the
correspnonding ha/ho curve gives a pvoint of the required
curve hg'/hy = k.

By means of the methods given above the curves of
constant energy were drawn in figure 46 and on chart 4.

, Since in a gas the heat content after the shock at
points of rest is still the oane, the critical velocity
which for an ideal gas is computed as

is a constant magnitude in the entire flow plane even whaen
shocks oceur,

-In a water flow, however, it is to be observed that
the annlogous critical velocity for water is not constant,
equation (42) beineg valid:
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This is constant only if the total head h, is constanty

that is, in a flow without. hydraulic jumps. .If these oc-

cur, however, we have seen-that the total head is constant
only between jumps, but for each discontinuity, "jumps®

to a new value hg', so that at the same time there is a

jump in the critical velocity - the latter after the jump

assumes a new value az, which is smaller than aﬁ:

«2 _ 2 1
a; =3 ghg

the ratio between the two being:

a¥/a¥ = /hq'/ho (90)

The change of the critical velocity (the limiting ve~
locity of streaming and shooting water) during hydraulic
jump, has the following important conseguence:

Let the critical velocity before the jump de a¥* ;
the flow velocity ¢ (point P in fig. 47). After the
jump, let the velocity bve C, (point Q). ?Q is a shock
polar, As a result of the jump, the total head and hence
a*y, ~have become smaler than hg and a* , resvectively.

It may then happen that in case ¢, 1is also smaller than
a* , ¢, mnevertheless becomes larger than a*;,. This
meansg that the water continues to shoot after the Jjump,
even if ¢, < a* . There exists a curve cp/a*, =1 (fig.

47). According to whether the point § is without or
within the area bounded by the curve and the u-axis, the
water, after the jump, is shooting or streaming. For a

gas this limiting curve, on account of a* = a*, = a*,
is a circle about O,
The curve cg/a*a = 1 that holds for water, is found

in the following manner.  Substituting in equation (8971b)
the relation (90), we have:

ho*/hy = hy/hy + é ho'/he (Ca/a*a)n

Putting ca/a*g = 1, there is obtained the equation:
3
ho’/ho = (§) ha/ho

From the family of curves hg'/hy = constant, and hy/h, =
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constant, +that curve along which this relation is satis-

“fied, is drawn. "This is the réqulred limiting curves

Since hydraulic jumps occur in-shootihg;water only,

tvo cases are possible: 1) Shooting water goes over after

the jump, into streaming water. 2) The flow is shooting
alsoc after the jump, : : :

All right hydraulic jumps are followed by streaming
water after the jump.

If the velocities are plotted in the characteristics
and shock diagrams to an absolute wvelocity scale, then to
each total head would correspond. its own diagram, All
these would be similar to one another. If, however, we
prlot the nondimensional velocities (referred, for example,
to a*l) only a single ¢diagrem is required. It is to De
observed, however, that in the shock diagram after the
jump (weint Q), we deal with the velocity ¢, referred 1o
a*,. If, however, the further changes in velocity are de-

gsired - whether of the characteristic diagram of a2 flow
without losses, or of a new jump - the velocity c, must
be referred to a*,, i.e., cp/a*,. This is given in the
hodograph by the moint Q' (fig. 47). It i¢ odbtained
from c¢gp/a* by multiplication by a* /a*,, that is,

from (90):
cp /a¥, = c,/a* fho/ho!

For this recason the cuvrves of constant total head after
the jump (fig. 46 and chart 4) are denoted by ./ hy'/h,
instead of by h,'/h, as parameter.

In order to avoid having to pass from Q to Q' af-

N\
ter the jump PQ, the shock polar could also have been
defirned as the geometric locus of all points Q' which
correspond to a fixed point P, There would thus be lost,
however, the property of the shock polars, that the nor-
mals to theilr chords are narallel to the shock wave front
in the flow.

20, Summary
We have seen that the flow of a compressible gas with

k=2 for the case with shock is no longer analogous %o
the flow of water on a horizontal bottom. From fizure 46
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it may be seen, however, that the enerzy loss Ae = 1 =
hol/ho is extremely slight over a large region. For
shocks (hydrauliec jumps), for example, whose state after
the shock is given by point @ 1lying in the hatched re-
gion, the relative loss is less than 1 vercent. On account
of this small shock loss the analogy of the two types of
flow is still satisfied %o a first approximation also for
the case with shock.

In order to have a comparison there has been drawn on
figure 48 a shock polar for water and the corresponding

shock polar for a gas (k = 2). There is also given the
corresvonding characteristic - the same curve for gas with
¥ = 2 -and water - in order to show that for continually

decreasing shocks, the two shock vpolars approach one an-
other and tend to coincide with the characteristic.

ELEMENTARY SOLUTIONS OF FPLOWS

For flows, bounded on two gides, in which hydraulic
jumps occur, there are a number of problems which will Dbve
treated in thie section. )

There nrises, for example, the question ag to what
occurs when a disturbance wave encounters a jump wave
front. For the limiting case of a very small jump, this
must naturally apnroach the cnse of two intercrossing dis-
turbance lines. Other vroblems are the crossing of two
hydraulic jumps of different families or the encounter of
two Jjumps of the same family. Furthermore, it is possible
Ter two flows of different directions that start from the
same state of rest or from two independent states of rest,
to meet. During this meceting it mav happen that both are
narallel flows in the same direction and form a vortex
cshect ot their surface of separation. Then there arises
the further question as to what happens when a disturbance
wave meets such a vortex sheet.

2l. Level Drop atout ~n Edsge

3
Fizure 26 ghows the level drop about an edge as o0b—
tained by the characteristic method. In what folilows, it
will be directly computed for water, the computation being

*For figure 26, see Part I, T.M. No. 9%4.
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the same as that carried out by Meyer for gases (reference

The origin of coordinates is taken throush the edge S
and the coordinate axes as shown in figure 49. In the three
equations of continuity, irrotational motion, and energy,
polar coordinates are substituted in order that the prop-
erty of a flow about an edge ~ namely, that all magnitudes,
as water depth h and velocity c(cr,ct), on & ray through
the edge are constant, may be simply expressed. The conti-
nuity equation (11) in polar coordinates is

dhep 1 1 dheecy '
B tEreetI T c 0 (o1)

The equation for the condition of no vorticity ou/dy -
dv/dx = O Tdbecomes:

ey ooy 1
r

Cy .
—* = 0 g2
ar r ( )

3

o

Expressing now the fact that all magnitudes are functioas
of 9§ =alone, we obtain from (91) and (92), if we also add
the energy equation (9), the three equations:

d(h
hocp + *ﬁajﬁil o) (92)
v
d cp
S Ctr 0 (94)
% id
oy + ci® + 2z h = 28 hy (95)

where ¢y, Cct, and h are to be considered devendent vari-
ables. Eliminating ¢, and 9, from the three equations,
there is obtained:

*The flow will not be investigated in detail here, dut
mainly the change in the water depth on traversing a dig—
turvance wave. Since for the disturbance.waves the de-
flection angle of the velocity i1s the charactéristic fea-
ture, there will also be determined the change of the wa-
ter depth as a function of the velocity deflection.

**From (95) we have cp dcyp/d8 + c¢ dey/d8 + g dh/dsé = 0,
This multiplied by h and replacing dcp/d8, according to
(94), vy Ct, Sives: h cpcy + h ocy dct/dﬁ + gh dh/ds = 0.
Multiplying equation (9%3) by ¢ and subtracting, there is
finally obtained: (gh -~ c¢42) dh/ds = O.
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—_
et? = g n, ct = = & W (96)

The velocity component cy, normal to the ray through the
edge, is equal to the wave-propagation velocity (sound ve-
locity in the gas). These rays are thus the Mach lines

of one family. '

Substituting (96) in (95) there is also obbtained the
radial component . c, of the velocity as a function of the
water depth h:

*
cp® = 28 h, -~ 3g h, cyr =+ ~/2% ho - 35 h (97)

We now have also the angle Vv which the streamline forms
with the gstraizht ray throuzh S:

(tan‘l)(ct/cr) = (tﬂndl)A//—“_EéEg;T‘ (28)

The flow is determined by (98), (07) and (98). We still
require h as a function of §. From (97)

Substituting (96) and the above equation in (g4), there is
found

3 a(n/h,) /7 31 -1
° /(2 < /hoin/n, V/l - (Zh/ho~l)J
Integrating, thnere is obtained:
[z
d = ﬂ%; (sin™ 1) (3 h/ho - 1) + constant (99a)

For the flow about an edge S starting from a parallel

*That the sign of cy (95) must be nezative may readily

be seen. In figure 49 all magnitudes are so drawn that
they have pvositive signs in the given coordinate systen.
The flow is from left to right, so that for it cy < O.

For the same reason in (97) cp » 0, as may also be found
from the fact that the flow about the edge (decreasing )
is equivalent to a jet expansion and that this in the case
of shooting water must lead to a sinking in level as a con-
sequence, so that the sign in equation (99) is correct.
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flow with the Mach number M = 1, the constant is
'“E (} _,:a:\ T

The velocity ¢ forms with the direction of the x-
axis an angle w, where w =¥ + 9, w Dveing the angle
of deflection of the velocity from the direction of ap-
proach. Only because we had laid the x-axis in the direc-
tion of approach, is this deflection angle w here equal
to the angle @ of the velocity diarram. Figure 50 ghows
h/ho as a function of w (¥ eqguation (98) + 9 eqgumation
(99a)) for the flow which starts with M = 1. The values
are collected in tadle II (p. 57).

The change in the deflection angle is
dw = 4dav + 43
Taking d¥ from equation (98):

a(n/ng)
2(1 - n/ny) /(n/he) (2 = 3 h/hg)

- -

and d¢ from equation (99), we have:

dw _ WA __JS2/F = 8/hy (170)

d(h/ho) 2 Jh/hg (1 - b/hg)

This eguation may also be obtained from equation (40a) if
the expression 2ghg —~ 2¢h is substituted for & since
the velocity curve of a flow about an edge is a character-
istic. The values computed from equation (100) are Ziven
in table III.

22, Refraction and Reflection of Waves at a Veortex Sheet

We shall assume that a flow (fig., 51) has a vortex
sheet along AB. Above and velow the sheet the flow is ~s-

sumed parallel with the velocities Cq, and cp, - ¥ The

water depths hal and hyp, are of equal magnitude. Fur-
thermore, let the Mach numbers on each side of the vortex

*The first subscript (a, ) distinguishes the upper from
the lower flow. The second subscript (1, o, 3) denotes the
corresponding field for the flow under consideration.
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sheet be greater than 1, In the lower flow no disturbance
line 1is assumed. The line & 1is assumed fto be a disturb~
ance line in the upper flow, and it meets the vortex sheet
at B,

We consider now the conditions that hold for all these
problems:

1., At each point of the flow and also at B, there
are two families of disturbance lines, so that from 3
there can start out at most the two disturdbance lines g‘
and t'. The Mach line t cannot be a disturbance line be-
cause it lies upstream of the region of influence of the
the assumed disturdance s,

2« The wvelocities Cas ‘and Chy nmust be pmarallel,

%e The water depth in the field a3 must be equal to
that in the field D13,

The above three conditions are sufficient to deter—
mine the angle of deflection produced by the refracted
wave 8! and the reflected wave 1! in the flow. For
small disturbances, we have:

nw/ha ) LAl '
Anh = (dh/dw) Aw; Ah/hgy = _@ﬁﬂlﬂg_' Aw ;Q@LE_/_E.QJ < 0
dw L dw
Hence
. . \
ha, = hy, + (dh/dwly B, (a)
ha, = hy, + (db/dw)y Dw,, . (v)
= + ¥
by, = by, + (dh/aw)y dwy . (e)

In addition to these three equations, we have the condi-
tions:

ha, = hyp, (d)

hg, = hy, (e)

buy, = Mg, ., WO (£)

where Diig e = Doy, = Dway, ** (g)

*Awal2 denotes the angle of deflection of the'velocity

of flow -a when it crosses the disturbance wave s Tfrom
region 1 into region 2., The Aw are taken positive in the
direction in which the deflection lies if the wave under
consideration is a wave with level drop.

*¥* (See p. 27)
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From the above seven equations with the magnitudes:

hal, hag, has, hbl, hbs, Awala, Awagz, Awals, Awblsi

— e e e et et e

(dh/dw),, (dn/aw)y

where those underlined are to be considered as given, all
the unknowns may be computed. In particular,

Awazs = Awala - Awals (101)
and _ 5
Aw = Aw = Aw, (102)
®is 21z #1231+ (an/dw)y/(an/dw), ]

In the above formula (di/dw)y/(db/dw), will be made non=
dimensional by introducing the totnl heads hoa and hob.

/dn\ dh/hg /dh/ho> / (ne /)
\dw/.b dw 4 By dw ‘o/ STy -
= = 5 = = (103)
/dh> <dh/ho‘ ho  sdn/hgN (h1/n) Vo
\aw QETER \Tdw SrTora

& a a

where Yy, and y, are written, for briefness, as the nu-

e
merator a2nd denonmninator, resvectively. From eguation (1n0)
1, 4
2 1 - k/hg

- an /
V3 J /1 v/% - h/h,

¥

Substituting the Mach number M in vlace of the water
depth ratio h/hg (M® = ¢®/a® = 2 hg/h - 2), there is ob-
tained:

y o= M | (104)

* ¥
(From p. 26)
Here we must subtract since if bwg,, 22d Aw,,, have
equal signs, s and t' are both rarefactions or both
condensations. The angles of deflection of the velocity

then act in opposite sense because s and t! are waves
of different families.
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Equation (102) mav then be written, finally:

Aw ALU.D 2
f13 o i3 (195)
4 + v
Awala Awalg 1 c‘b/ya
and equation (101) becomes:
Aw A v./y. -1
“a, ayx Th e R
P23 =1 o _.S13 - D _é_.n_-.i (103 )
AYY r. /vy +
Awa . Luala NEWAN :

For clarification, two numerical examvles will be

computed:
K e e e et e e et e e £ e i et e o s e e
cenrding .s .
6 1., Mgy=2, Hyp=3 2. Hp=3, My=
equation + -
(104) Yo = 2,31 7.18
Yy = .18 2,31
y_b/ya = 1.33 . 726
(105)  bAw,. Jhw, . = +.84 +1,16
10
A : Aty = A - A
(106) Auam/qwam +.15 .16
These two examples ~re schemnticnlly represented in fFig-
ure &2 for an soproaching level drop wave as vwell ns for
a level rise wave, The numbers written becide the dig-
turvance lines are the deflection angles referred to the
deflection angle of the rm»nronching disturdance.

We shall consider this behavior more in Zeneral, Ia
figure 53, y 18 shown as a function of M. The exvres-
sion y = ME/V/M“ -1 is to te investigated for M> 0,

s ¥y 1is real only for M > 1; 7 has no real zero.

2, y—s>® a) for M—s1l as ¥ = 1/ 20 ~ 1)

b) for HM—>® ag v = M
dyv Mo - . ; s
3. aﬁ M—L%———E%% a) vy has a minimum at ¥ = N
\ r1 o .
. (14°-1) wit v o= 2
b ® > M > increnses

S

v decrease
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¥y is nlways positive o > y > 2. To each y there corre-

" spond two possible Mach numbers M. ALl possible ratios.

of any two values of y are positive: 0O < (yb/ya) < .
Thus, according to equation (105)

=

0< (b, /[bw, )<

This means that the wave passing through and refracted by
the vortex sheet, is of the snme type as the incident wave
and has up to twice as large a deflection angle as the in-
cident wave. Purthermore, the reflected disturbance line,

- on account of ~ 1< (Awaas/Awaln) < + 1, has at most the

same deflection as the incident disturbance, but may bve of
the same or opposite sign., The following tadble summarigzes
the various possible cases:

Ve = Maa/vfﬁaa -1, yy = Mba/vfﬁba -1,

p = 2/(1 + yb/E) and ¢ =1 -p, 0< »n,qg< 1)

‘”
M, > 1, My > 1 A u)m/AUJam Awaes /Au,»ala
I. Myp> /2 1. M,< /2 a) vy, > vy 2 to 1]-1 to 0O
i
V) yo < vy 10" »mp 0 " g
2. ¥Mpy> /2 o)y, < yb! p 1{ g " 0
|
d) yg > vy 10" 200 " -1
II. Mypy<W/2 1. My 2 e) y,>wyy 2 " 1]-1 " 0
= - 1" i
£) vy < vyl 1 o| O q
2. Mg>v 2 g) Vo < Ty p " i q " 0
~ ] : " -
h) Y, P ¥y 1 21 0 1

In fi%ure 54 are shown several clarifying sketches.
The first series holds for My > VFE, the second for.
Mb <‘Nf§: The numbers beside the disturbance lines are
the valuesg Atuﬁﬁwa . Since the equation

1z
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has the two positiveAsolutions

Mgy = My
and SO
M, = My/ /My =1

il

there are two caseg for which a disturbance wave passes
through the vortex sheet without any reflection. The
first case is self-evident. The two flows a and b are
equal to each other, In the second case, however, a VoI~
tex sheet is present. Nevertheless the disturvance wave
is not reflected but nasses through - thouuyh refracted -
and has before and after, the same deflection angle fTor
the veloecity,

Since the hydraulic jump loss is still small, even
for rather large jumps, the ratio of the Mach numbters on
the encounter of two flows that arise from the same state
of rest, and of which one has exverienced a jump while the
other is without losg, is 1in the neishvorhood of one.

v, is then approximately equal to NN and it follows

from equations (105) and (106) that the main portion of the
inclident waves goes through the vortex shoeet and only 2
much smaller vart is reflected.*

2%, Plows with Hydraulic Jump

a) Critical angle.-~ To each Mach numbver I, or to
each nondimensional wvelocity ¢, Dbefore a hydraulic jump
(shock), there corresponds a shock polar to which a tan-
gent may be drawn from the origin. The angle between this
tangent and the u—axis is the maximum angle by which the
flow with the corresponfiing Mach number may be deflected.

*A numerical example that illustrates this is the follow-

ing: 1. My = 1.75; 2. hy'/hy = 0,95 for the flow which
experiences a jump. Then with hy, = hy, and hbl/ho',

we have My = 1.68, With these two Mach nungbers, there is

obtained from equations (104), (105), and (106), depending
on whether a disturbance wave meets the vortex sheot from
below or adove:

(Awla/Awla) = 0,99, and 1.01, respectively
and
(Mgs/bwip) = 0.01, " -0,01, i
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. For if the angle of deflection were larger, the jump could

no longer go.past. the edge. but wounld travel upstream of

~the edge. If the side boundaries are infinitely long, it

travels upstream to infinity and only streaming water ro-
mains at the edge (subsonic flow). If the boundary of the
deflected jet is finite (see fig. 85), the jump also trav-
els upstream for the above critical angle dut always re-
maing at a finite distance from the obstaclc.

Besides the critical angle, which indicates whether
a jump ie at all possible, there is another somewhat smnall-

.er limitinsg angle, also depending on the Mnach aunmdber of

the flow - namely, the deflection angle, for which the
Mach number M after the jump, is exactly egqgual to 1.
(See also fig. 47.) 1In fizure 56, the critical angle is
shown as a function of the nondimensional velocity ¢,
before the Jump.

b) Hydraulic jump imnminzing on a fixed wall.— If =
jump, for example, as a wave of the lower rarily, impinges
on a fixed wall, only waves of the uvper family can start
out from there, The reflected waves must malkte the veloc-
ity after traversing the incident, and reflected waves
have the same directicn as before the incident wave. From
this it follows that the reflected wave must also be a
jump with the same deflection nangle as the incident wave.
Figure 55 shows an example. Let the incident jump be char-—
actorized by the jump AB on the shock polor through A.
BB! is the chHange in velocity due to thoe Jump loss; sne
also fizure 47. We then have the Jjump B'C, and finally,
the adjustmont CC! '

In flows with hydraulic jump, in addition to the two
field coordinates, we need the depth referred to a fixed
depth (for example, that of the apvroach flow) as a taird
coordinate, in order that the depth lines of the water
surface may be drawn.

As for the gimpnle slant jump, there is also for each
Mach number a critical angle which indicates the uvvner lim-
it of the deflection of the jump ~gainst the wall in or-

-

der that reflection may be possible.

.. In fizure 85 is drawn the limiting curve, outside of
which the impinging jump must lie in order that reflectioan
may be possible, There is also shovn, with the aid of an
example, how this limiting curve is founid. It is determined
by the condition that the reflected jump gives rise to its
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greatest possible deflection. The critical reflection an-
g2le of the reflected Jump is approximately half as large
as for the ordinary jump (fig. 56).

¢) Hvdraulic jump imoincing on a free Jjet boundary.-
At the free jet boundary the pressure must be constant.
This condition is satisfied if, at the vosition where the
Jump strikes, a family of waves with level drop starts
out. If the jump were free from losses, the deflection of
the velocity at the free jet boundary would be twice as
large as the deflection by the .incident Jjump, and the mag-
nitude of the veloecity would not change. Actually the de~
flection is somewhat smaller, depending on the losses and
the velocity decreases.

* d) Bncounter of two hydraulic Jumps of different fam-
ilies (crossing).- Whereas, for the impact of a jump
against a fixed wall, only a single condition on the direc-
tion must be satisfied, and for an impact against a free
jet Dboundary, only a condition on the pressure, In the case
of the intercrossing of two Jjumps, conditions on both the
‘pressure and direction must be simultaneously satisfied.
Only if the angles of deflection of the two intercrossing
Jumps are equally large, does the problem lead to & con-
dition on the direction only and hence to case (v).

The solution of the general case is obtained by trial.
The direétion of tne velocity, after the two jumps, is ob-
tnined to a very good approximation if the jumps are con-
sidered as though there were no imvact losses. For thae
determination of the water depths and the velocity on the
hodograph, the four different impact losses may subsequent-
ly be read off and corrected for. For drawing accuracy
this is entirely satisfactory. In what follows, we shall
consider the process theoretically in somewhat greater de-
tail (fig. 57).

In the velocity diagram, let the imvact coming from

above be given by 4B, the correspvonding adjustment by
BB', and the impact striking from below, by ACC'. Aftcr
the crossing, there is a jump, C'EE' on onc side, ond
B'DD!' on the other. The points D! and E' rust, on
the one hand, lie on the same ray through O, and on the
other hand, the water depth for D! (losses of A =after
B, and of B! after D); and the water depth for E!
(Losses of A after C©, and of C' after E), mnust be

equal to each other. Since, however, the product of the
values hol'/hg for-the jumps AB and .B'D with very
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great accuracy 1s equal to the product of the walues ho'/ho
for the shocks AC --and C!E, _the.points..D!. and E' co~
incide; and furthermore, the vortex sheet starting from

the crossing position, is very weak,

‘e) Encounter of two hydraulic jumps of the same family
(overtaking).- The jump AB with the adjustment BB! and
the succeeding jump B!CC! are given by the deflection an-
gle of the wall (fig. 58). The two impacts are waves of
the same family (in the example, the lower one). They meetl
at the point P of the flow. All possibdle waves which
pass through this point are drawn., At this point we have
a meeting of?: 1) the two given impacts; 2) the Mach lines
a, by, ¢, and d = the latter causing no disturbances., From
P there start out: 1) the resultant impact PQ; and 2)
the disturbance line PR, The streamline passing through
P is obtained as a vortex sheet in its upstream lying
portions The impact ©PQ and the wave PR are determined
by the condition that, abvove and below this vortex sheot

the water depths and velocity directions agree; i.e., the
points E! and D of the velocity diagram must lie on the
same ray through 0, and hgy must be equal to Thp. The

impact losses for the two jumng AB and 3'C following
each other are, together, emaller than the single impact
loss of the jump AR. (If, instead of two discontinuous
deflections, there were many very small ones, the lower
flow would finally pass over into a flow without dissipn-~
tion, while there would alwars start out a finite jump
with dissipation, from the meceting point of all the dig-
turbance lines.) The product of the values ho'/hg for
the jumps AB and B'C, isg thus nearer onc then ho'/ho

for the jump AE., Tcr this reason, E! must lie nearcr
the orizin O of the velocity diagram than D.

In the example computed, the result was obtained that
the disturbance PR (line of the uwvmer family) is a level
drop wave to which, in the velocity diazgram, corresnonds
the characteristic C'D. The deflection caused by it is
very small compared to the two changes in direction due
the jumps. In most cases the overtaking of two jumps is
also computed with good approximation by suverposing the
deflection angles upon each other,*

to

*In the example the first deflection of the wall is 19,47,
the second, 6.8°, The velocity -deflection by the resuli-
ant jump is 27.3°%, If the deflection angles of the two
Jumps were simply added and the sum takem as the deflec~

tion of the resultant jump, the error would have been 1°
in 250,
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f) The three possible cases of the encounter of dis-
turbance waves with hydraulic Jjumps.- Figure 59 shows the

three possible cases: 1), 2), and 3). In the first case
the disturbance line crosses the Jjump. This is a limit-
ing case of the intercrossing of two jumps (section d).
Practically, there occurs no vortex sheet, and after the
crossing both the jump and the disturbance wave deflect
the veloc1ty with extraoralnary accuracy by the same angle
as before the encounte

The second and third cases are both limiting cases of
the overtaking of two hydraulic Jjumps. Here, too, the de—~
flections may be approximately superposed, which means thnt
the reflected wave PR 1is neglected compared to the inci-
dent wave,.

An idea as to the estrength of the vortex sheet and the
crder of magnitude of the reflection PR may be obtained
by a simple consideration. The disturbance line meeting
the jump is imagined as a zero-lcss rarefaction of thae
same deflection angle of the velocity as the Jjump. This
rarefaction is assumed to be concentrated on a single line
(fig. 60) which, of course, is not actually the case. It
the shock polars were bharacterl tice and the jumps were
without losses, the Jjump and the disturbance would then
balance each other at point P, from which point there
would not start out then any jump PQ, disturbance line
PR, or vortex sheet. For the actual jump these lines do
not vanish, however, azand from them an estimate may be made
of the order of magnitude of the reflection that occurs 17
only a small disturbance strikes against the slant hydrau-
lic jummn.

Fizure 60 shows these relations by an example (case
%), On crossing the jump from region A to region B in
the flow, the state in the velocity dingram jumps from A
to B on the shock polar AB with the corresponding in-
pact loss. To B is added the adjustment BB'. From re-
gion B to C, a zero—loss rarefaction is crossed which
by assumption is concentrated on o single line, and whose
deflection brings the velocity into the direction before
the jump. Orossing this rarefaction means for the condi-
tions in the velocity diagram a traveling on the character—
istic 3B'C. The waves PQ (lower family) with the ini-
tial voint 4, and PR (upper family) with the initial
point C, must bring avout the condition that in the re-
gions X and D of the flow which are separated by the
vortex sheet starting from P +the nressure and direction
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"of flow are egual. These conditions determine D" and E
*in- the wvelocity diagram lying on .the characteristics.. CI,
and AE, respectively.

The reflected wave PR (level rise), and the wave
PQ (drop), which in the case of equal and opposite de-
flection angles at the corners S and T =2ive the devi-
ation from simple superposition of the deflection angles,
are both very 'small compared to the wave TP overtaking
the jump.* - ’ '

" g) Summary.- All flow elements with hydraulic jump
have the common property that a vortex sheet arises which
may generally be neglected. To satisfy the conditions of
equality of pressure and direction on the two sides of
the vortex sheet, two waves are developed whose deflec—
tions are determined from these conditions. Especlially
striking is the case where jumps overtake other jumps or
disturbance lines since in this process all given waves
are of the same family; nevertheless, small waves arise of
the other family. '

h) Application.—- Let shooting water (M = 2) flow in
a channel of 24° deflection.* Let the deflection be facil-
itated through a vane at the center of the channel, so that
the ovanking of water on the concave side of the wall mey be
reduced (fig. 61). The contour of the vane is on the upper
side made up of a circular arc with short straight pieces
at the ends and a straight line at the lower side mnking
an angle of 12° to the direction of avproach. The lower
wall of the channel is assumed to be a circular arc., The
upper (left) boundary of the channel is determined so
that the flow at the upper side of the vane is without
losses and at the end of the vane there is again produced
a parallel flow with M = 2. This side of the flow is
thus a clear channel which deflects a parallel flow in the
simplest manner.

At the end of the vane at both sides, arises a hy-
draulic jump since the vane angle there is not zero.

*In the example of figure 60, the jump angle is about 25°
for hg'/hg = 0.90. The impinging wave has the same change
in direction of the velocity (25°). The deflections of
the reflected jump and of the deviation, however, amount
to only 19, Only 4 percent of the waves overtaking the
Jump are reflected,
¥*Th, v. Karman (reference 4) in 1938, considered the de-
flection in an open run analytically.
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These two Jjumps are determined from the pfessure and direc-—
tion conditions for the upper and lower sides- of the s*re“m~
line starting from the trailing edge.

X ~SURFACES

As previously remarked, the position-determining poten-
tial itself is not reguired if the velocity diagram and the
flow are drawn simultaneously. We wish, however, to see
what the appearance of the X-surfaces (formulas 24-31) of
several flows is like.

24, Parallel Flow

In the entire field of flow the velocity components

u and v have the fixed values Vg Vg On account of

dX = Xy du + Xy dv = x du + y dv

X thus has a fixed wvalue Xo+ The points of the K~-gurface
all coincide at the single point wu,, Vo XO. The slope

of the X-gsurface, however, is not constant, being ziven
according to equations (242) by the coordinates x and ¥y
of the flow: Xy = x; Xy = 7. For an 1nf1n1tely wide par-
allel flow, it thus takes on all wvalues.

For the X-surface of a parallel flow, we find a bun-
dle of. infinitely many plane elements through a point.
The reason why this X-surface degenerates so strongly is
to be found in the faet that the inverse transformation
from the velocity field (X,u,v) +to the flow space
(0,x,y) for a parallel flow is infinitely many-~valued.
All flows whose transformations to the wvelocity space are
not reversible (parallel flow and flow bounded on one
side), have degenerated X-surfaces. Although in these
cases &, x, y do not inversely give uniquely X, u, v
there corresponds to each element &, x, ¥y, g, ®Y of the
¢~-surface a quite definite element X, u, v, Xys» Xy of the

X~surface and conversely.,

25. Laval Nozgzle for M = 2

The X=-surface for the experimentally investigated Laval
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nozzle (fig. 77) is shown in figure 62. Its only discon-
tinuities lie at the boundary since to each point wu,v in
the interior there corresponds unidquely a point of the
flow. In particular, A and 3B are points of the type
described in section 24.

26. Orif

" pde

ce

We wish to consider the flow out of an orifice with
small back pressure (fig. 6%), Let the parallel flow of
approach in the minimum cross section have the velocity
¢ = a*, so that ¢ = 1. To this therc corrcsponds in the
velocity diagram, the point A'. The firgt Mach line
which starts from P strikes the edge Q. The first dis-
turbance ‘1ine, however, that starts from P or Q, strikes
the symmetry axis in R (not in 4A), depending on the mag-
nitude of the increments that are choden for the disturb-
ances. The level sinking about the edge P hag no effect
at the edge Q, and conversely. We first have about cach
edge in its immediate neighborhood a normal level drop
bounded on one side (sec. 21); thne disturbance waves start-
ing out from P, for example, are siven by the normals %o
the characteristic A'B!' (devending on the chosen incre-
ment of the deflection angle). Analogously, the states
at Q are given on the characteristic A'3"., The level
sinking proceeds up to points such as 3! and 3", whose
speeds OB! = UB", according to the energy equation, cor-
respond to the given lower water depth. (For a gas the
expansion proceeds until the nresgcribed dback pressure 1is
attained.) The wusual flow about an edge (flow bounded at
one edge) holds until it impinges on the first disturbance
line RS or RT (fig. 6%)s From there orn the crossing
family of disturbance lines is constructed as for the Laval
nozzle, Along the AX axis the velocity is horizontal for
reasons of symmetry. In the velocity diagram it changes
from A' to X!. It 1is further to be remarked that at X
the water depth is as great as it would be for a one-side
bounded flow about an edge if the flow had twice as large
a deflection as that about P or Q. Although the dig-
turbance lines (straight rays) of the one-side bounded
flows about P and Q are not superposed simply. as such,
the angles of the velocity deflections are, however, super=
rosed. The processes at each side of the axis are such as
though the axis were a fixed wall, as must be the case
since each streamline may be considered as a fixed wall,

The origin of the coordinate system x,v 1s placed
in the orifice cross section and in the channel center
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(point A of fig. 63). All points of the orifice cross
section ©PAQ hnave, in the velocity diagram, the single
image pecint * A'., Since along the entire distance PAQ

x = 0, the X -~surface at A' in the direction of the U~
axis, is hori?ontal. In the direction of the v—axis
howev r, it hags at A!'! all slopes betwsen - o‘< Xvn< +

¢ there is no constant value for X, we shall
set X at A' equal to zero.

Te the point § of the flow, there correspond all
points of the characteristic A'B"Y of the velocity dia-
gram. The X -surface is thus of such character that for
all ooints c¢f A'B", it has the slopes Xy = 0 and Xy =
+ v5+ The edge of the X -surface, whose projection is
the characteristic A'3", thus lies in a plane. The lat-
ter has, in the ¥ direction, the slope y,. nnd since we
have set X in A' equal to zero, it masses through the
u~axis. With its points vertically above A'B", it gives
not only vpoints of the X-surface Dbut also the tangent
plane to the surface at these points., Similarly, the plane
through the T-axis with the slope X, = - Yo &ives sym-
metrically points over A'B!, together with the tangent
plane of the X -surface. Furthermore, this surface has,
above the T~axis, a horizontal tangent in the ~v-direction
since the velocities nlong the TdU-axis (F = 0) in the
flow occur on the channel axis and where v = 0.

The X -~surface uppemrs as a valley between the two

blanes described above, ending at A', nnd which in all
sections U = constant ranges through all slopes = y, <
Xy < + 7g.

Particularly noteworthy is the vehavior of the X~—
surface with regard to the woint A'. The values of ¥
itself are continuous. The slope ian the v direction,

however, becomes discontinuous in A gsince, although the
surface erds continuously in a point, the slove still has
all values between Xy = - y, and Xy = + ¥o (fig. 64).

27, X=Surface of the Flo

-

v about an Edge

Since the flow about an edge is o flow bounded on onc
side, and since it i1g discontinucus at the edge, its ¥~
surface de“eﬂ rates.

Since all the velocity vectors have their ends on a
EN

single characteristic, the latter is the projection of the
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X-surface., If, furthermore, we place the origin of the co-
ordinnate system. x,y in the edge S (fig. 49), then for
all points of the hodograph corresponding to S (x = 0O,

v. = 0) - i.ee, for the entire characteristic, on account

of d%X = Xydu + Xgdv = x du + y dv, dX = 0; that is, X =

constant = X,. The portion of the X-surface correspond—

"ing to the point S 'isg thus a curve lying vertically above

the characteristic at a constant height or;'more‘accurateu
ly, an infinitely narrow horigzontal strip.

Furthermore, along a fixed ray through S the veloc-
ity components u and v are- constant and therefore
(again on account of d4X =.x du + y dv), X = constant
k fnr cach ray through the edge S. The constant I«
all rays has at the edge, hewever, the constant value
Xo+ Thus for the entire flow about an edge, K = Kg.

Since there is no constant value for the vosition-~determin-

ing potential, we may set Xo = 0, The ¥-surface shrinks

w o
(o]
[{Ee]

into a characteristic,

To a fixed ray through the edge there corresponds, in
the velocity diagram, a single point of the characteris-—
tic. Since along this ray y/x and hence XV/Xu is con-
stant, dut X, and X, themselves are variable, the X-

surfnce at this point consisteg of a dbundle of surface cle-
ments.

The X-=gurface of the total flow arout an edge con-—
glists of a bundle of infinitely narrow surface strips
which lie along a fixed characteristic in the u,v plane
(fig. 65).

EXPERIMENTAL INVESTIGATIONS
TEST, SET-UP

28. Measuring Channel

The tests were conducted at a flow tank of the Aero-
dynamic Institute of the Swiss Technical High School at
Zurich. The water used in the test was circulated by a
pump which delivered up to about 25 dm3/s. Figure &6 shows
the test set—-up. At 1 +the water from the pump enters the
tank. Through a screen 2, it is calmed and reaches the
straightening section 2, 3 on the lower side of the inter-
mediate bottom BB. At 3 and 4 are deflecting vanes. The
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water, after two deflections, reaches the honeycombd 5.
There the velocity is small compared to the velocities in
the test portion, the water being led from the approach run
6, where it is greatly accelerated, to the Laval nozzle in-
vestigated 7. The condition of a quiet flow of appreach
is thus attained and the measurement of the total energy in
the minimum cross section actually shows that, except for
points in the immediate neighborhood of the bottom =and side
walls, the total energy has a constant value over the cross
section to within 1 percent.

Figure 67 shows the investigated Laval nozzle 7 as
seen from above, and figure 88, as seen from the nozzle
end. There may alsc be seen the two side walls of the flow
tank. In the background may be seen the honeycomb.

29. Measurement of the Depth

The shave of the surface (surface in space) of the wa-
ter flowing through the Laval nozzle was obtained by Zaginag
with a fine point (fig. 63). A horizontal cross beam on two
accurately horizontal longitudinal beams 2nd normal to them,
is movable parallel to itself in the longitudinal direction
of the channel. On the cross beam is mounted a block, to
which the point movable in the vertical direction is fixed.

Gaging with the pin voint gives measuring values which
are accurate to at least 1/10 millimeter and may be well
observed since on the finest contact with the surface of
the moving water, capillary waves are set up.

rement of the Total Encrgy and
of the Boundary Laver

In the theory of the chnracteristics method it was
assumed that the flow was frictionless. In the actual
flow, both at the bottom and 2t the side walls, boundary
layers are Tormed as a result of the Ffriction. In order
to avoid the resulting deviation from the thcory, the side
walls used. in computing the flow were displaced inwardly
with respect to the actual (material) walls of the nozzle
by the bvoundary-layer thickness. Only a parallel displace-
ment 1s necessary since the mean thickness of the boundary
layer over the depth from the minimum cross section to the
nozzle outlet only slightly increases. (See fig. 73b.)
Furthermore, the bottom was not laid horizontal bdut slight-
ly inclined to correspond to the increase in the bottom
boundary layer.
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- Figure 69 shows the set-up for the determination of
the total energy.  The'cross- beam of the coordinate appa-
ratus runs across the picture, and to the left may be seen
a portion of a longltudlnnl beam. On the cross beam fronm
left to right are:

1. The micrometer screw to which in the depth measure~
ments a voint has been clamped and provided with a supvort,
to which is fixed a glass pitot tube. The distance of the
tube from the bottom may thus be adjustcd. This fine ad-
Justment is used for the measurement of the bottom boundary-
layer thickness.

2. To the same block, dispnlaceable along the cross bean,
is fixed a second micrometer screw whichk displaces a needle
vertically, for measuring the heizht of the water in the
pitot tube.

. Finally, on the right is seen the mounting and ad-
Justment of the Dblock which ig used for measuring the
boundary laver at the vertical side walls of the nozzle.

BOUNDARY LAYER

A1, Differential Bquation of.the Laminar Boundary Layer
with Affine Velocity Profilcecs in a Constant-Width Channel

Let h denote the depth of the water (fig. 70), ¢
the undisturbed velocity at the position x, &8 the bound-
ary-layer thickness, and ©p the pressure in the boundary
layer. dh, dec, 46, and dp ~re the changes in these mag-—
nitudes in passing from the position x to the position
‘x + dx., The width bD. of the channel is asgumed constant
and equal to unit length. Purthernmnore, lect c’/c be set
equal to £ and 'z/é = Tl. Then for -a boundary layer with
affine velocity profiles, £ = £(M) is o curve independ-—
ent of ¢ and 8, and the magsanitudes o, B, ¥ defined
by the following exprcssions:

n>1

o = L/n (L - ¢) dan = J/ (L.~ £) an
n>1

B = U/? (1~ %) an = /m(l = ¢7) am
o - %

Y o=

(an/atln_q
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are constants independent of =x. From these are computed:

The volume boundary-layer thickness 8y = a 8

It

The "momentum boundary-layer thickness" &3 B & (fig. 71).

The tangent intercept 6; = 7Y & (fig. 71).

An imvortant result is obtaoined from the continuity
equation in connection with the energy equation. At the
position - x in the boundary larver nnd in the undisturbed
flow, the same amount of fluid flows throuzh =2s at x + dx,
so that

¢ (h - 8;) = constant
or in differential form:
¢ (b= 8y) = (c + dc) (b + dh - 8y - a8y (107)
"By the enersgy equation (9)
c dec = - g dh (108)

there is obtained, eliminating dec

as
dh = v (109)
g(h - 8v)

1 - 22X
2

¢

-

As long as the volume boundary-layer thickness is small by

comparison with the water depth h, we may set h - &y = &L,
Using also the relations & h = a2 and c/a =M, equation

(109) becomes, on dividing both sides by dx,

-2 aé
éé = nh v (llO)
dx M® - 1 dx

or, with (108),

:2 46
ﬁgkﬂ—z - (111)
i fnd X

dc
dx

o e

The slope (dh/dx) of the water surface certainly never
actually becomes infinite. Since, however, the denomina-
tor at the right for M = 1 assumes the "value zero, in
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_order that the left sides of equations (110) and (111) may
~remain- finite, the,boundary:layerbﬁlppe,_d&vldx for those

values of M must have the wvalue zero. The points for M
= 1 are the critical points; i.e., those where the flow
velocity ¢ 1s equal to the wave propagation velocity -

/EL. The boundary layer varies in such a manner that its

thickness 68y in the neighborhood of the critical posi-
tiong neither increases nor decreases in the direction of
the flow.

While normally a flow (for example, as a potential
flow) is determined by the boundary walls (boundary condi-
tions), and this flow then determines the course of the
boundary layer, the relations at the critical points, on
account of the great sengitivity of the flow to crose-
sectional changes,; are just the reverse, In this case the
boundary layer acts as a determining factor on the flow.

We shall now apply the momentum equation to a portion
of the boundary layer. Let the elementary region to which
the equation ig applied be bounded by the contour shown in
figure 70 by the thick line: bottom, vertical at x + dx;
boundary layer outer limit, wvertical at x. The volume
per second flowing at x into the region ig:

Vg = ¢ (8 - 8y4) =¢c (8 = abd) = (1L - a) ¢ 8

The volume per second flowing at x + dx out of the region
is .

v (1 - a) (¢ 8+ a [c 8])

x+4x

Thus the volume per second flowing through the upper side
of the region is

av = Vv V, = (1 - a) (¢ a5 + & de) (a)

x+dx T 'x

This quantity transfers throusgh the unper side a momentum
in the x-direction:

diy = ¢ p dV = (1L - a) p ¢ (c 48 + 8§ de) (v)
The monentum flow throuzh the vertical side at =x is:

)
1g =J/ncl pe! dz = pc?(8-8;) = pc2(6-B8) = 1-p) pc?S

0
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Simllarlv there ig.obtained the outflowing momentum tqroujn
the vertlcal side at x +-dx:

2
iypge = (1 = B) p (o + dac)’ (5 + ab)
Hence the total momenﬁum flowing into the resgion through
the wvertical sides, is

diﬂ = i had

: - iiiay (1~ 8) pe (o a8 + 28 de) - (e)

" Through the bottom surface no momentum enters tae region.

The external forceg acting on the.elémentary region
under considerstion in the x-direction are: 1) at the ver-
tical side at x: pg (h - 8/2) 6§; 2) at the vertical side
at x + dx: - pg \h + dh - 6—§~g83 (a + d8); 3) at the
upper side: pg (h + %% - 8 - dg} 48; and 4) at the bot-—

tom: T dx where T igs the shear stress of the fluid at
the bottom at the position x. All these forces have, as
the resultant force in the x—-direction, the sum:

K = - pg & dh - T dx (d)
We may now write the momentum eqguation, which states that
the rate of change of momentum in the region corresponds

to a2 force that balanceg the external forces:

(1-a) pclecdd+sdc) - (1-B) pc(cad+28dc) = + pg 8 dh + T dx

(e)
For the shear stress, we have:
dc'x ; vpe
—_— = "N 5 = c/ & = S hil
ﬂ dz /Z =0 |C/ T Dp / T NS ( )
(N is the dynamic viscosity, 0N/p = v, the kinematic vis-

cosity.) Between the depth of the water and the velocity,
holds the energy equation (108):

an (z)

Jg -’

c de = -

Substituting (f) and (g) in (e), thcre is obtained the dir-
ferential equation of the boundary layer:
a.C d8 (

- & de - o) as _
Y (2B a) 8 iz * Y (B a) ¢ & i v

=
2l
"
p—
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This equation states that the rate of increase of the

.boundary-layer thickness decreases as the flow is more ac—

celerated., For very large accelerations the thickness
even decreases. C

32, The Behavior of the Boundary Layér in the
Throat Section of the Laval Hozzle

If we consider the Laval nozzle at the minimum cross
section (throat), we have approximately the relations in
a channel of constant width. At a short distance ahead of

the section M < 1; that is, MB - 1< 0, 8o that from
equation (110), if the boundary-layer thickness increases
(d8y/dx > 0), the water surface drops (dh/dx < 0), and
conversely. If the boundary layer would continue to in-
crease toward the critical positions instead of remaining
constant as we have seen from (110), the water level there
would drop more sharply., The more it drops, however -
that 1s, the greater the acceleration, the smaller the in-
crease in the boundary laver. A balanced condition is
thus obtained, when the level at the minimum section drops
so rapidly and the acceleration becomes so large that the
boundary-laver thickness no longer increases. There thus
remains an inclination of the water surface even if the
side walls at the minimum cross section have a small curva-
ture and all effects of the latter vanish.

If, in equation (112), for dc we substitute dh from
equation (108), we have:

- Y(28 - 2, b oy L ag db& _ 7
(28 = a) 87 5= + Y(B -~ a) ™86 - =v e (113)
From the above we obtain with d8/dx = O for the minimum

cross sectlion a relation between the slope of the surface
and the boundary-layer thickness:

an _ ve
dx Y(2B - a) g&
wvhere ¢ = a = ,/28 hy/3. We then have:
dn _ 242 PWBo L (114)
dx VB SE (2ad) Y (o B L 1)
2@\ @

A similar relation holds for a gas, the surface slope being
replaced by & pressure drop.
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3%, Tests on the Boundary Layer in the Throat Section

The velocity profile of the flow at the channel cen-
ter on the bottom was obtained for various total heads
(variable discharge guantities). The results are shown in
figure 71; 8¢ denoting the volume boundary-layer thick-
ness, O6p the intercept of the tangent of the velocity

profile, and 51 the momentum boundary-layer thickness.

The nveraged test values from figure 71 substituted
in equation (114) zive dh/dx as a function of h . This
is the continuous curve of figure 72.

The slope of the water surface at the center of the
minimum cross section was also directly measured, these’
test noints also being vplotted in figure 72.

%4, Boundary-Laver Variation at the Side Walls

Figure 72a shows the contour lines of tiae total meas-
ured boundary-layer thickness at the side walls. On fig-
ure 73b is plotted the variation of the values averaged
over the water depth nlong the walls., The boundary-layer
thickness is practically constant and only increases some-
what at the end of the nowzle., The side walls of the noz-
zle used in computing by the characteristics method are
shifted inward with respect to the real walls by the amount
of this thickness.

325. Bottom Boundary Layer

Fizure 74 shows the contour lines of the measured
boundary-layer surface at the dvottom. If this "hill" is
revlaced by a mean vplane the latter has a slope in the
longitudinal direction of the nozzle of 0.8 mm/m. The
bottom of the nozzle was inclined d»y¥y this amount, thus ap-
proaching more closely the ‘theory which assumes a horizon-
tal bottom for frictionlesns flow, A

From figure 74 it may be seen, furthermore, that in
the region of the minimum cross section the slope of the
surface is extremely emall in the direction of the flow,
as must be the case according to previous consideration.



"N.i.C.A. Technical ¥emorandum No. 935 a7

) TEST ?ESUL”S OF TEE DEPTH MEASUR&MEVTS

6. Hydrmullc Jump (Shock)

In a series of preliminary tests, measurements were
also made on the hydraulic jump. The velocity of approach
at a corner had the Mach number M = 2 (exit from the noz-—
zle). TFor various deflection angles B (see fig. 37), the
angle Y of the shock-wave front and the mean water depth
hy at some distance after the shock, were measured. The

test results are shown in figure 75.

37. The Water Depths in the Minimum Cross Section

‘Theoretically, the water-deoth ratio at the minimum
cross section h*/hy should assume the value 2/3. Pig-
ure 7%a shows the direct measurement of the water surface
for various total heads a2long the channel center in the
reglon of the mininum cross section. From this neasure-
ment were also taken the values dh/dx which were used in
section 33. ' :

On figure 76b are nlotted 'the measured water depths
h* as a function of hy. For all total heads that are

somewhnat gmaller than 10 cmy, i.e., for the ratio

/ total head h N
=3 =~ 2 < 0.5
width of minimum cross section

h*/h, has the constant wvalue 2/% to 1 percent. Only with
increasing total heads are the deviations somewhat larger.

%8. Water Surface in the Nozzle

a) Theoretical surface.- Figure 77a shows the computed
disturbance lines for the half-nozzle. Since the side walls
of 3~millimeter-thick sheet brass showed smnll deviations
with respect to the nogzgzle drawn in figure %4 (sgtraight
line QR, <circle RS, and portion determined by them ST),
the actual wall in figure 77a and the corresponding bound-
ary layer were laid as a basis for the determination of the
flow by the characteristics method. In order to obtain the
lines of constant water depth with sufficient accuracy, the
velocity deflection was chosen in steps of 1/2°.
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On figure 77b are drawn the lines of constant water
depth and also the measured depth contours for the total
head hy = 31.1 mn.

v) Measured water surfaces.- For six different total
heads the water surface was obtained with the apparatus de—
serived in section 29, In each measurement the flow was
sufficiently stationary. By wolishing and cleaning the
side walls a condition was obtained where hardly any capil-
lary waves on the water surface appeared except for some
waves toward the nozzle exit.

Figures 78a-f show the test results. All depth data
refer to a point in the minimum cross section 0.5 mm abdbove
the bottom. Since the thickness of the boundary layer for
the flow with hg = 80 mm 1is &8y = 0.5 mm, the depth
measurements for this total head is directly comparable
with the theory. In the other measurements, corrections
were to be made for h of from +0,05 mm for hy, = 100 mm

to =0.25 mm for hy, = 25 mm, depending on the total head
and the corresponding thickness, according to figure 7l.

The symmetry of the depth contours to the nozzle axis
is well satisfied. From these measurements (figs. 78a-~f)
the water-depth ratio h/ho along the nozzle axis was 0b-
tained and compared with the theoretical (fig. 79).

39. Commarison of lMeasurements with Theory and Conclusions

Figure 77b shows that for the total head h, = 31,1 nm,
there is satisfactory agreement between theory and experi-
ment both with regard to the depth curves and the magnitude
of the devths,

For the large total heads, 100, 80, and 60 mm, there
is, however, n deviation that is not to bhe overlooked.
The water surfaces for these heads have, in the lower por-
tion of the nozzle, o well-maried valley (figs. 78a,b,c),
with an adjoining hill while, according to the theory of
the two-dimensional flow of shooting water, the surface in
that region should be horizontal. 4lso, the character of
the depth contours. deviates from the theoretical for the
large heads. In the first place, the two side valleys
move too slowly upstream toward the center of the channel
and reach the latter too late. Secondly, they have in the
theoretically straight portion 2 break which becomes more
marked toward the nozzle end.,
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With dec*eqsin” total head hO = 60, 40 30 mm, the

and the w,terudepth tios “lso agree in magnltude. Fig-
ure 79 shows very clearly how, with decreasing water depth,
the apvcarance of the surface along the nozzle axis tends
more toward the theoretical and, for h, = 40, 30, and 25
m2, almost agrees with it.

Only for still smaller totnl heads do the deviatioans
again increase on account of the decreasing measuring ac-
curacy and on accovnt of the relatively increasing effect

of the vottom boundary layer.

The reason for the incressing deviation with increas-—
ing water depth is probably to be found in the fact that
the assumption of the theory - namely, the neglecting of
dw/dt, compared with the acceleration of gravity, is no
longer quite satisfied.*

ts bty

It may further e seen from figure 79 that at the
minimum cross section .for all total heads, there ig a de-
vintion which does not decrense with decreasing water
depth. This is the intcraction discussed ian sections 32
and 3Z, of the boundary layer with the flow nt .the critical
positions,.

As long as the assumptions of the theory are satis-
ficd, the stationary flow of shooting water with free sur-
face may be dotermined by thae characteristics method. It
is herc a question of determining the first approximation
of the three~dimensional flow of an incompressible fluid,

and this may be computed as a two-dimensional flow of a
compressible fluid,

40. Photosgraphs

In the following, a collection of several flow photo~
Zraphs is presented. Figure 80 shows for a large total
o . that the water flows through the nozzle with ap-
proximately parallel flow at the exit., The capillary
waves are here desirable since the waves reflected by them
allow the shave of the water surface to be seen,

* . ~ . X . . .
An estimate of the order of magnitude gives for the Laval
nozzle investizated

ow 3w
) u == 4+ v + ow o=
dw/dat . Cx Sz
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Figures- -8la-h show the FTlow at theé nozzle exit for
-constant total head h, dut decreasing water depth of the
lower water into which the nozzle empties. Figure 8la
shows the right hydraulic jump. If the lower water is
banked still higher, this jump travels upstream into the
nozzle and loses its normal front in the interior vhere the
flow is no longer parallel. In figure 8lc the lower water
level is still hicher than the water depth at the nozzle
exit. The two slant hydraulic jumps that arise, cross

each other, In figure 81ld, the two jet boundaries are al-
most parallel, while in figures 8le-~h, the lover water
level lics lovwer than the surface at the nozzle end and for
this reason there occurs a sinking at the edgse and the jet

"explodes.® The ond of the sinking -~ the darker lines
starting from the edges which are at the same time the in-
ner Dboundaries of the lizht reflections - may be clearly

distinguished from the jet boundary, vwhich is approximately
given by the outer boundary of the light reflections on the
water.

Figure 82a shows a2 cylindrical 3ody which has some-
what the shape of a cutwater in the parallel flow with
M = 2., TFisgure 82b shows the same body from behind, viewed
obliquely. Comparison of this picture with figure 83 (ref—-
erence 5) shows to a surprising degree the analogy of the
comuressible gas flow with the water flow with free upper
surface. In particular, there should also be noted the
region behind the body.

The same tapered body produces, when set obliguely to
the flow nnd the deflecting angle of the flow is greater
than the critical shock angle corresnonding to the approach
velocityv, n gquite different flow (fig. 84). The shock no
lonZer lies at the edge and the shock wave front is no
longer straight, but dent,

Figure 85 ghows another cutwater—-shaped body whose
taper hnlf-angle is zreater than the critical angle of the
approach flow. The shock sevarates from the edge and would
travel upstream to infinity if the sides deflecting the
stream were infinitely long.  Only because the Dody has a
finite length dces the shock-wave front remain stationary
at a finite distance nhead of the bvody. The shock, how-
ever, has changed its character as compared with that for
the more tapered body. The front is curved and only at
some distance does it pass over into the form of shock ob-
tnined with the other body. With both flows (figs. 82 and
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95) the shock decreases in intensity with increasing dis-
ntance from the body similarly on account of the finite size
of the bodyvi

Translation by S. Reiss,
Fation~l Advisory Committee
for Aeronautics.
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List of Most Fregquently Occurring Symbols

X,5.2,
r,d,

Ay By

c,®,

Cmax:

acceleration of gravity.

gas constant.

kinematic viscosity.

densitye.

pressure.

absolute temperature.

heat content.

specific heat at constant pressure.
specific heat at constant volume.
adiabatic exponent.

veloclty notential.

position-determining potential.
rectangular. coordinates in thg flow space.
polar coordinates in the flow plane (x,y).

curvilinear coordinates in the velocity plane,
characteristic coordinates:

general variables.

components of the wvelocity in the x,y, and z.
directions.

polar coordinates in the velocity diagram (two-
dimensional flow).

maximum velocity.
velocity increment.

in gas: velocity of sound. —
in water: propagation-wave velocity ./gh,

critical wvelocity.
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U, V,Che0e,

M = c/a,

a=(sin~ ) (a/c),

h,

h,,

ho,’ho"’
PosTysigshy,
T*,h*,-.-,

Wy,c,,0,,M,,

ua,cz,h’* Mga

e 9 ¥
Upg s

A(X,Y),B,C,

a,b,c,

Section 31:

(fig. 71)

P N

nondimensional velocities (reference veloc-—
ity a*; in hydraulic jump a*  the

critical velocity before the jump).
Mach number.
Mach angle.
water depth.
total head (water depth for ¢ = 0).
total heads.after hydraulic Jjumps.
subscript ©0O: stagnation state.
critical state.

asterisk *

subscrint 1: before hydraulic jump.
subseript 2: after hydraulic jump.
velocity after right hydraulic jump.

coefficients of linear partial differential
eaquation of second order.

coefficients of the differential equation in
normal form,.

coefficient of the differential equation of
the flow in normal form.

small deflection angle.

deflection angle of the flow without dissipa-
tion.

deflection angle for hydraulic jump.

angle of the hydraulic jump wave front.

&, boundary-layver thickness.
@, B, Y, constants of the affine velocity
profiles.

volume boundary-~layer thickness.
momentum boundary-laver thickness.

tangent intercept.
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TABLE I1I
Water, k = 2
AL I R Y. Y I N N
2 | hg = M—a K jw==3 hg ¢ a*L a K

(dege) (degze)

) 2/3 |1,000 |1.000 o 26 04234 [ 14516 {2456 [-0,160

1 0,624 11062 11,098 | 2,88 | 27 o223 | 14527 | 2464 | -ol77

2 «598[ 1,101 |1.160| 2,07 28 e212 | 1,538 | 2,73 | -4196

3 o576|1.,129 | 14214 | 1440 29 o201 | 1549 | 2482 | -42156

4 555114156 |1.267 | 1.014f 30 0190 | 1,559 [ 2,92 | -.234

5 .535)1,182 |1.319| .758{ o1 2180 | 1569 | 3402 | ~e252

6 W516{ 14207 | 14371 4590 32 0170 | 1579 | 3,13 | -4271

e .498|1.229 1,422 .476] 33 0160 | 14588 | 3424 | —,291

8 0481] 14249 |1.470] .394] 24 o151 | 14597 | 3,36 | —e313

9 o464 1,269 | 1,520 .318[| 35 0141l | 1,603 | 3449 | —4336
10 0448/ 1,288 [1.570| <263) 36 G132 1 14613 | 3463 | =36
11 047321 1,306 {14622 | J215| 37 e123 | 14321 | 3,78 | =438
12 W417] 14323 | 14674| 170 38 0115 | 14629 | 3,93 | =440
13 W402] 14340 | 1,727 L1331 39 «107 | 14627 | 4,01 | —o43
14 2387 14356 [147811 103} 40 0099 | 1,644 | 4,26 | —e46°
15 o373| LoB372 | 14835 | L072| 41 0092 | 14551 | 444 | -o49
16 e359| 14387 | 1489 046 42 2085 | 14657 | 4463 | —e52
17 0345] 1,402 | 1,95 .02 43 078 | 14653 | 4485 | —eb4
18 e331] 14416 [2,01 | -4004] 44 o072 | 14609 | 5408 | =458
19 «318] 1,430 [2,07 | -.028] 45 W066 | Lo675 | 5433 | 62
20 .305 1.44:4 2.13 ""5050 4:6 .O(DO 1.{»})81 5.62 "'.66
21 e292! 1,457 | 2420 | -6071) 47 o054 | 14686 | 5495 | =70
22 «280] 16470 | 2,87 | ~+089) 48 0048 | 14691 | 6430 | =75
23 0268] 1,482 |2.34 | -4108| 49 V043 | 1,696 | 6a68 | ~e81
24 w2506 14494 [ 2,41 | =ol26] 50 «038 | 1,700 | 7411 | -486
25 0245|1505 | 2448 | ~4143]65° 531|0 JB ® -
(For table I, see Part I, T.M. No. 934)
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TABLE III

935

n/h, dw/d(h/hy) d(h/ny)/ dw
2/3 0 o
0.65 22.70/1 0.0441/,
.625 %4.,29/1 .0292/,
.60 41.4 .0242
.575 46.6 .0214
.55 50.8 L0197
.525 54.2 .0184
.5 57.4 L0174
.45 62.7 .0159
4 67.6 .0148
.35 72,7 01375
.3 78 .4 .01276
.25 85.6 .01168
.2 94.8 .01054
.15 108 .00923
.1 131 .00762
07 | 156 .00642
0 | o 0

vwﬁ@/dfﬁ)ﬁggnéf Jﬁr yéfﬁ;i"i723/2 (1 - h/he) §f£7£§ (100)
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TABLE IV
Normal Hydraulic Jump
Wy My hy /hg Tag ha/he | ho'/ho T, Tag
1.0 1.0 0.867 1.0 0.667 1.0 1.000
1.02 1.0%2 .65% .980 .679 1,000 1.000
1.04 1,063 639 .960 .692 .999 .999
1,06 1.093 .625 .941 .704 .999 .997
1.08 1,127 B11 .922 .715 .998 .995
1.10 1.161 .597 .903 726 .998 .993
1.12 1.198 .582 .884 737 .997 .990
1.14 1,237 .567 .865 L 747 .996 .986
1.15 1.276 .552 .846 .756 .994 .981
1.18 1,718 .5%6 .82%7 .765 .993 .976
1.20 1.359 .520 .808 L77e .990 ,970
1.22 1.404 .504 .789 L7779 .987 L9653
1.24 1.448 .487 .770 .785 .983 .955
1.28 1.498 A2 .751 .791 .979 .946
1.28 1.550 .454 L7531 .795 .973 .936
1.30 1.608 A3 712 .798 .967 .925
1.22 1.567 .419 892 .799 .959 .914
1.34 1.730 W401 .872 . 800 .951 .901
1.36 1.796 .38% | .652 .799 .941 .887
1.38 1.8587 L3566 .632 .798 .931 .872
1.40 | 1,942 L3477 611 .795 .919 .855
1.45 | 2.154 . 300 557 .778 .881 .808
1.50 2.45 . 250 500 .751 . 834 ,750
1.55 2.84 .199 1 L4328 .706 .770 .679
1.60 2.41 147 .%68 . 540 .685 .589
1,85 4.43 .092 | .285 .542 566 470
1.70 | 7.25 .035 ; .174 .36 .369 .296
N3 | o ! 0 e 0 0 0
Before jump: hg,, total head
ﬁl, velocity referred to a¥*,
a*,, critical velocity

After Jjumps

M, , Mach nunder

hy, water depth

ho', total head

Uog s velocity referred to
h,, water depth
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Figure 56.- Critical jump angle
Tigure 54.- Refraction and reflection of ‘ gur as a function of the
waves at a vortex sheet. flow of approach.
Wall (a) Simple jump.
P (b) Jump reflection (for nter) :
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Pigure 55.~ Reflection of a
. hydraulic jump
sgainst a fixed wall, Figure 57.- Crossing of two jumps. .(IA this

———-—-—Mmiting curve, :
/b, =ha"/ '/ figure D' and E' are drawn sep-
srated though D' prectically coincides with E!),
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N.A.C.A. Technical Memorandum No. 935 Figs. 58,59,60,61,62

Figure 6l.- Deflection vane in & channel with

shooting water. Top: hydraulic
Jumps and disturbance lines, bottom:
stream lines (2° steps).

‘~A

¥ 7

Figure 58.~ Overtaking of two hydreulic jumps, <

T a (3) \\\ R
" F  Vortex
sheet

(1) Crossing
(2) and (3) overtaking

Incident jump

_— L disturbance
line.

==== Resulting jump

—_— L disturbance
line

Pigure 59.- Jump and
disturbance line.

0

Figure 60.- Determination of the év/u B
order of magnitude

in the overtaking of a disturb-

ance line and a hydraulic jump,

Figure 62.~ X ~surface of the

Laval nozzle. (x=0,
¥=0 in minimum cross section
in center of channel),
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Figs. 63,64,65,66,70,71

Figure 62.- Flow

from
an orifice,
Disturborce lines
Sprung 15°)
-——1/7)—..
. & ? ] 9
Figure 66.. Test o 2zl — ]
set-up. From the pump
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Pigure 71.~ Boundary layer in the
minimam cross section.
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Figure 70.- Boundary layer.
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Pigurs 64.- x ~surface of an orifice
for the region near the

exit cross section.

—
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Figure 65.-~x ~surface of the level
' drop about an edge.



N.A.C.A. Technical Memorandum No. 935 Figs. 67,68,69,75,76

Figure 67.- Test nozzle seen
from above.

Figure 69.- Boundary leyer
measurement.,

Figure 68.~ Test nozzle seen 7Jump angle 0 h/h, Weter depth
from the nozzle 00 7 i
end. Measurement of tne water Streaming
surface. :k?_\
45° a5 %ﬁ%
aob
o {
0 10°__5 200 0 0o ___A 2be
Figure 75.- Hydreulic jump.
Autmm h I Theory
16 . —_—— R
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100 \\ /‘ G
34;\\\::: ' we°
e G 5 /
23
3,3:2::‘:‘;: / Figure 76.- Water depths
;;.::& in minimum
e cross section. (a) water
= surface in the region
—r— 0 of minimum cross section
7 2em, ) 5 0 __p Bem (x=0). (b) h*=f(h,).




‘N.A.C.A. Technical Memorandum No. S35 Figs. 72,73,74

diydx _
' ] } —— From bourdary layer measurement,
S P . —-- * direct measurement.
. ‘/A
02 ‘ . 75
// . .
' pal Figure 72.- Check the relation
/ , . between the boundary
01T layer thickness and the slope of
/ / the surface from equation (114).
0 5 ’ 10 15¢cm he
Boundary fayer thickness
a
/f—\”_7 /—\w
7
ho=80 mm Fourdisfaricae 01 und 02mm
mm 5,
2
p !

o~——10cm——i

\Mirrrrurm cross section
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Figure 73.- Side wall boundary layer.(a) total surface,(b) value averaged
over the depth.

Bouridary /loyer thickness ¢
u &

9&//\?0
o5 2> 2
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Figure 74.~ Bottom boundary layer surface.
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L Figure 77.- Acturl Laval nozzle. (&) Disturbance
lines (steps 1/2 degree) (b) depth
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Pigure 79.- Water depth ratio along

the nozzle axis.
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Figure 80.,- Flow through the nozzle
viewed from the nogzle

end,

Figure 82a,-

Figs. 80,82,83,84,85

Flgure 82b.—

Figure 82.- Tapered body in water. Shock wave starts from the tip.

Figure 84.~ Tapered body set
obliquely, shock

engle above critical,

Tapered body whose teper shock ang'e
is greater than the critical angle
of the flow; shock wave released by

body.
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